学术交流

当前位置:

学校首页 学术交流 正文

罗马尼亚Maria Malin助理教授学术报告通知

信息来源

信息时间

2017-11-13 16:53:05

浏览量

报告题目Inequalities of Korn's type on a surface and applications to shell theory

时间与地点:1115日周下午3:005:00曲江校区理学院报告厅

报告人:Maria Malin, University of Craiova


报告摘要:

In physical and engineering sciences, many problems are modelled by partial A linear Korn inequality on a surface is an estimate of the distance between two surfaces in terms of the corresponding linearized change of metric and change of curvature tensors. 

We establish several estimates of the distance between two surfaces immersed in the three-dimensional Euclidean space in terms of the distance between their three fundamental forms, measured in various Sobolev norms (see [2]). By imposing appropriate additional geometrical assumptions, we show that the dependence of the third fundamental form can be avoided. These estimates, which can be seen as nonlinear versions of linear Korn inequalities on a surface appearing in the theory of linearly elastic shells, generalize in particular the nonlinear Korn inequality established by P.G. Ciarlet, L. Gratie, and C. Mardare [1]. 

We also show how these nonlinear Korn inequalities can be applied to the nonlinear Koiter shell model and how they can be reduced upon a formal linearization to linear Korn inequalities on a surface, which play a fundamental role in the mathematical analysis of the linear Koiter shell model.

 

报告人简介

Maria Malin,女,博士1989年出生,Craiova大学助理教授。 2011年和2013年分别获Craiova大学学士和硕士学位。2017年获香港城市大学博士学位,师从国际数学大家法国科学院院士P.G.Ciarlet教授。研究领域为弹性壳体模型与理论分析,主要研究兴趣包括:偏微分方程理论微分几何曲面论等